

Benefits and limitations of high-throughput sequencing for the diagnosis of constitutional thrombocytopenia

Kathleen Freson

KULeuven

ERN-EuroBloodNet subnetwork Rare bleeding-coagulation disorders and related diseases

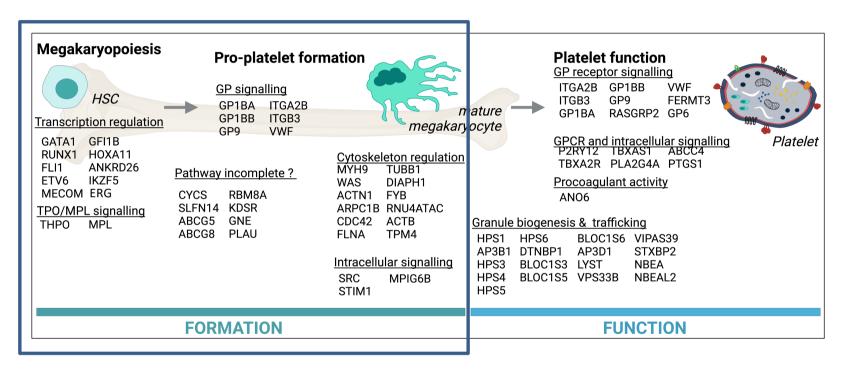
Leuven— Belgium

July 3rd 2024

Conflicts of interest

Unrestricted research grant from Swedish Orphan Biovitrum (SOBI)

- 1. Design of an NGS panel test to diagnose inherited thrombocytopenia
- 2. Diagnostic rate using NGS panel test for inherited thrombocytopenia
- 3. Pro and Cons of using NGS panel test for inherited thrombocytopenia: using examples from the clinic


Diseases (ERN EuroBloodNet)

Inherited thrombocytopenia: 41 genes

Variants in these genes cause inherited thrombocytopenia

Gene curation to deliver diagnostic-grade genes (TIER1)

RECOMMENDATIONS AND GUIDELINES

J Thromb Haemost. 2019;17:1253-1260.

ith

Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: Communication from the SSC of the ISTH

SSC Scientific and Standardization Committee

- www.isth.org/page/GinTh_GeneLists
- >Yearly updates during the SSC session

J Thromb Haemost. 2024;22:645-665

Evaluating the clinical validity of genes related to hemostasis and thrombosis using the Clinical Genome Resource gene curation framework

```
Justyne E. Ross<sup>1</sup> | Shruthi Mohan<sup>1</sup> | Jing Zhang<sup>2</sup> | Mia J. Sullivan<sup>3</sup> |
Loredana Bury<sup>4</sup> | Kristy Lee<sup>1</sup> | Isabella Futchi<sup>1</sup> | Annabelle Frantz<sup>1</sup> |
Dara McDougal<sup>1</sup> | Juliana Perez Botero<sup>3,5</sup> | Marco Cattaneo<sup>6</sup> | Nichola Cooper<sup>7</sup> |
Kate Downes<sup>8</sup> | Paolo Gresele<sup>4</sup> | Catriona Keenan<sup>9</sup> | Alfred I. Lee<sup>10</sup> |
Karyn Megy<sup>9</sup> | Pierre-Emmanuel Morange<sup>1,1,2</sup> | Neil V. Morgan<sup>1,3</sup> |
Harald Schulze<sup>14</sup> | Karen Zimowski<sup>15</sup> | Kathleen Freson<sup>16</sup> | Michele P. Lambert<sup>17,18</sup>
```


Get Started- About Us- Curation Activities- Working Groups- Expert Panels- Doc

Clinical Domain Working Groups

Hemostasis/Thrombosis Gene Curation Expert Panel Affiliated to Hemostasis/Thrombosis CDWG

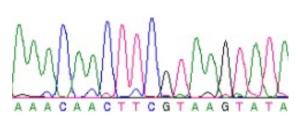
(syndromic) Inherited (macro/micro)thrombocytopenia

Syndromic thrombocytopenia	ABCG5 (AR) ABCG8 (AR) ACTB (AD) CDC42 (AD) DIAPH1 (AD) FLNA (X-linked) GATA1 (X-linked) GNE (AR)	MPIG6B (AR) MYH9 (AD) SRC (AD)	ANKRD26 (AD) ETV6 (AD) FLI1 as part of large HOXA11 (AD) KDSR (AR) MECOM (AD) RAP1B (AD) RBM8A (AR) RUNX1 (AD)	STIM1 (AD) ERG (AD) e deletion (AD)	ARPC1B (AR) WAS (X-linked)
Non-syndromic thrombocytopenia	ACTN1 (AD) GFI1B (AD&AR) GP1BA (AD&AR) GP1BB (AD&AR) GP9 (AD&AR) ITGA2B (AD) ITGB3 (AD) NBEAL2 (AR)	SLFN14 (AD) TPM4 (AD) TUBB1 (AD&AR)	CYCS (AD) FLI1 (AD&AR) IKZF5 (AD) MPL (AR) THPO (AD&AR)		FYB1 (AR)

Normal

Large

Network
 Hematological
 Diseases (ERN EuroBloodNet)


Small

2016: From Single gene analysis to Multi-gene panels

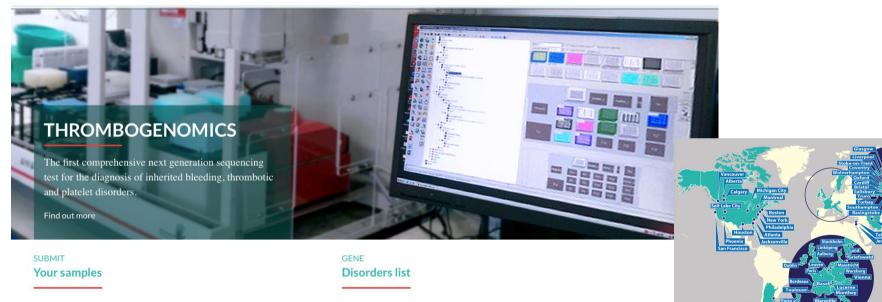
Targeted, Whole Exome Sequencing (WES) or

Whole Genome Sequencing (WGS)

Past

Sanger sequencing, MLPA, CNV

MULTI-GENE PANEL TEST (Virtual)



Implementation of multi-gene panel test: ThromboGenomics study

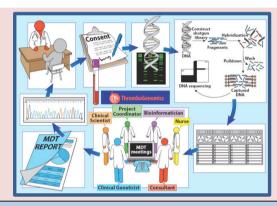
ABOUT US SUBMISSION PROCESS GENE AND DISORDER LIST PEOPLE EVENTS CONTACT US

for rare or low prevalence complex diseases

Network
 Hematological
 Diseases (ERN EuroBloodNet)

Simeoni I, et al. Blood. 2016

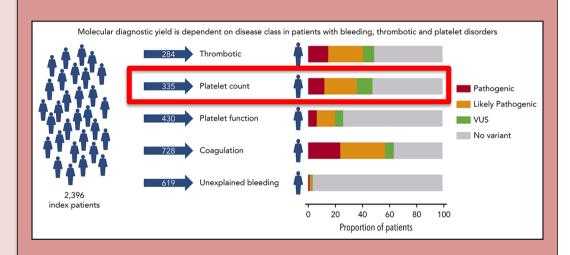
ThromboGenomics Version 1



Regular Article

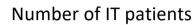
THROMBOSIS AND HEMOSTASIS

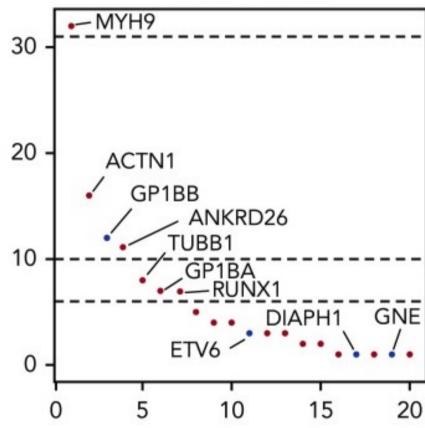
Ilenia Simeoni, Blood 2016


A comprehensive high-throughput sequencing test for the diagnosis of inherited bleeding, thrombotic, and platelet disorders

- ♦ Bleeding, Thrombotic and Platelet Disorder genes
- ◆ Targetted approach with coverage: 99 98 %
- **◆** Detection indels (no inversions)
- ♦ Mean of 5.34 variants/case after filtering
- ♦ Multiplexing 24 (later 48) samples

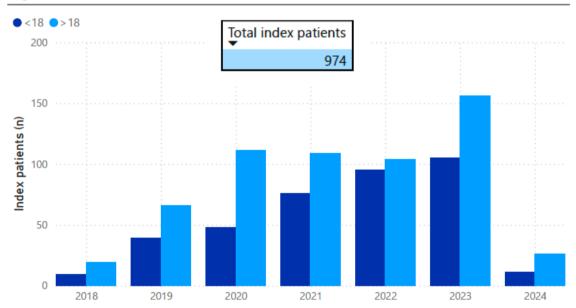
ThromboGenomics Version 2




Diagnostic rate for thrombocytopenia is nearly 50%

Genes involved in patients with IT

Platelet count


Network Hematological Diseases (ERN EuroBloodNet)

NGS panel for bleeding and thrombosis in the clinic

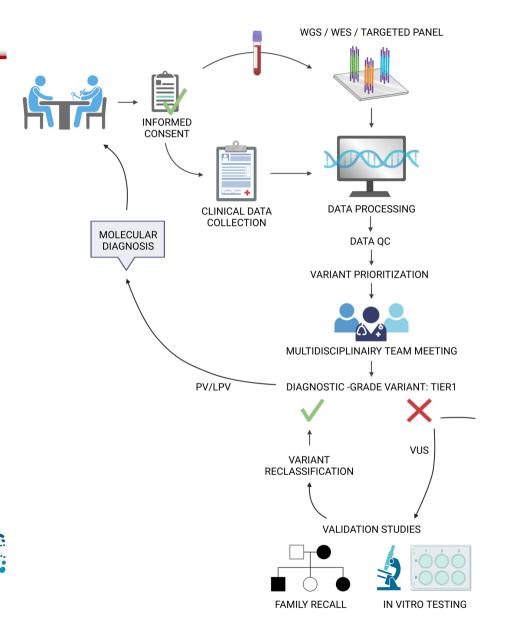
Age index

Christine Van Laer

Interim analysis

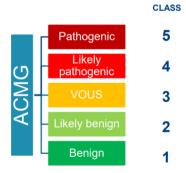
https://doi.org/10.1016/j.jtha.2022.12.007

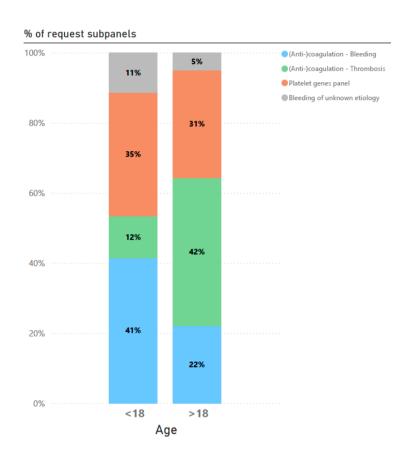
J Thromb Haemost. 2023;21:887-895

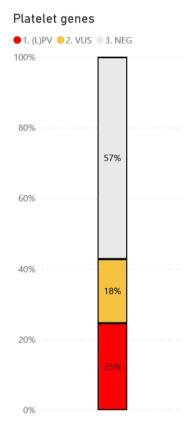

jth

BRIEF REPORT

Clinical application of multigene panel testing for bleeding, thrombotic, and platelet disorders: a 3-year Belgian experience

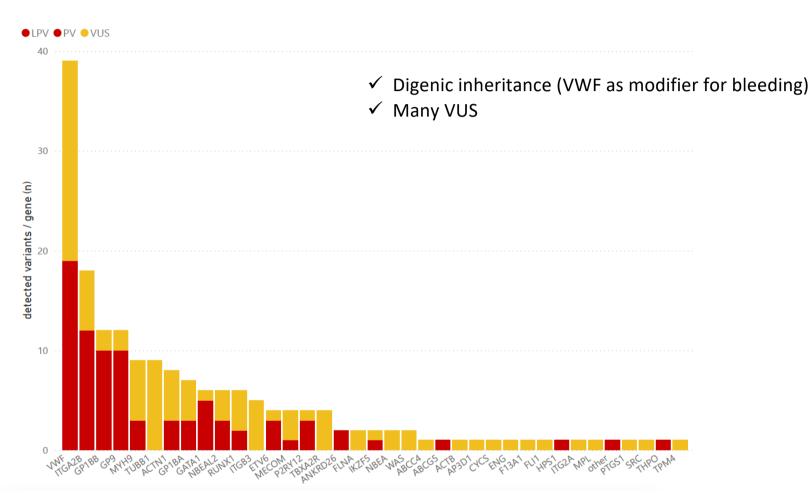

Christine Van Laer^{1,2} | Marc Jacquemin^{1,2} | Sarissa Baert³ | Veerle Labarque | Chantal Thys¹ | Thomas Vanassche^{1,5} | Chris Van Geet^{1,4} | Peter Verhamme | Karen Willekens³ | Anniek Corveleyn³ | Kathelijne Peerlinck^{1,5} | Kathleen Freson¹


Workflow using multi-gene panel



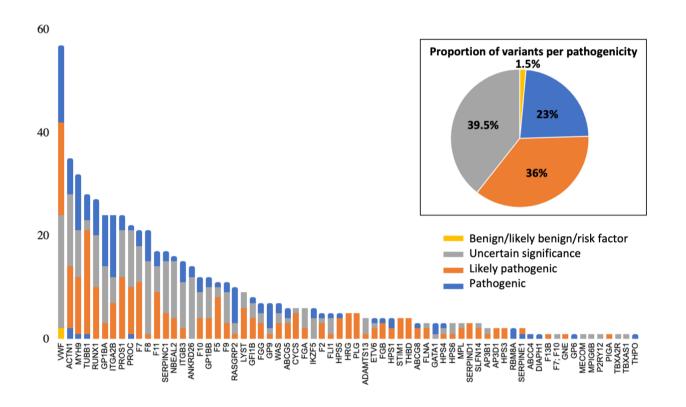
Ver Donck F et al. RPTH 2021

Results genetic testing (2019 –2022)



Genes involved in patients with IPD

Strengths and Limitations of NGS panel test


Strengths	Cost and time efficient Improved diagnostic rate Improved gene curation for BPD Improved variant curation using ACMG classification rules Allows detection of the unexpected (e.g. oligogenic inheritance, exceptional phenotype-genotype relations)
Limitations	Low diagnostic rate for indistinct phenotypes Many variants are novel (classified as VUS) and require further studies Need for improved DNA variant databases Ethical concerns related to leukemia genes and carrier detection Lack of structural variant detection (including F8 intron 22 inversion)

Variant Capture Tool to improve classification

814 Variants have been submitted from 30 diagnostic labs from 14 countries

Variant reclassification by ClinGen working groups for thrombosis & hemostasis

Network
 Hematological
 Diseases (ERN EuroBloodNet)

https://www.isth.org/page/GinTh_GeneLists

Megy et al, JTH 2021

What do I tell the patient about NGS testing?

Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH

Kate Downes, Pascal Borry, Katrin Ericson, Keith Gomez, Andreas Greinacher, Michele Lambert, Eva Leinoe, Patrizia Noris, Chris Van Geet, Kathleen Freson ⋈, Subcommittee on Genomics in Thrombosis, Hemostasis ... See fewer authors ∧

First published: 08 July 2020 | https://doi.org/10.1111/jth.14993

Risk for unsolicited findings using a panel test for IT

Unsolicited findings: refer to variants in disease-causing genes that are unrelated to the original rationale for testing and that are identified inadvertently

Examples:

RUNX1, ETV6 and ANKRD26 variants that are risk factors for leukaemia when testing for platelet disorders

Carriership of variants in recessive genes

Risk of unsolicitated findings: an example

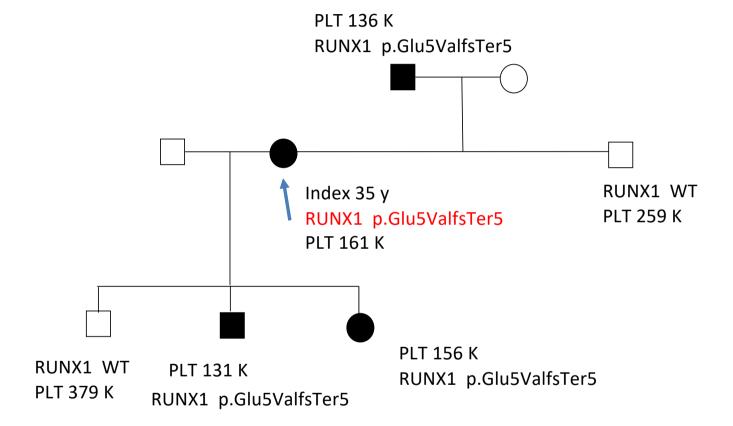
Index case, 35 y
Mucocutanous bleeding symptoms
Platelet count 145- 161 K, normal size
Platelet delta storage pool disease

RUNX1 p.Glu5ValfsTer5

BRIEF REPORT | DECEMBER 12, 2013

Enrichment of *FLI1* and *RUNX1* mutations in families with excessive bleeding and platelet dense granule secretion defects

Jacqueline Stockley, Neil V. Morgan, Danai Bem, Gillian C. Lowe, Marie Lordkipanidzé, Ban Dawood, Michael A. Simpson, Kirsty Macfarlane, Kevin Horner, Vincenzo C. Leo, Katherine Talks, Jayashree Motwani, Jonathan T. Wilde, Peter W. Collins, Michael Makris, Steve P. Watson,


Martina E. Daly on behalf of the UK Genotyping and Phenotyping of Platelets Study Group

Blood (2013) 122 (25): 4090-4093.

Poll taken @EAHAD meeting 2019

Question 1

I have requested a genetic panel (or exome) test to diagnose patients with thrombocytopenia and did inform my patient that this test contains genes that are known risk factors for leukaemia?

1. YES Outcome: +/- 50 / 50 %

2. NO

Question 2

Patients should sign an informed consent before participating in a genetic panel (or exome) with the possibility of an opt_in/opt-out choice to know about variants in leukemic risk genes?

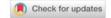
1. YES Outcome: +/- 60 / 40 %

2. NO

Dectection of a missed diagnosis

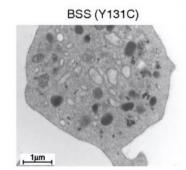
- Index case, 22 y
- Bleeding after trauma, menorrhagia (same for her mother)
- Macrothrombocytopenia (PLT 125K, MPV >13fL)
- Normal aggregations and ATP secretion
- FACS normal CD61, CD41 and 50% for CD42
- Prolonged PFA (171 s COL/EPI and 136s COL/ADP)

GP1BB p.Leu16Pro TUBB1 p.Gly109Glu


GP1BB p.Leu16Pro

BRIEF REPORT | JANUARY 26, 2017

Rare variants in *GP1BB* are responsible for autosomal dominant macrothrombocytopenia


Brief Report

Suthesh Sivapalaratnam, Sarah K. Westbury, Jonathan C. Stephens, Daniel Greene, Kate Downes, Anne M. Kelly, Claire Lentaigne, William J. Astle, Eric G. Huizinga, Paquita Nurden, Sofia Papadia, Kathelijne Peerlinck, Christopher J. Penkett, David J. Perry, Catherine Roughley, Ilenia Simeoni, Kathleen Stirrups, Daniel P. Hart, R. Campbell Tait, Andrew D. Mumford, NIHR BioResource, Michael A. Laffan, Kathleen Freson, Willem H. Ouwehand, Shinji Kunishima, Ernest Turro

Blood (2017) 129 (4): 520-524.

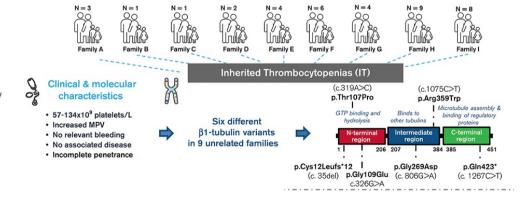
B-3 (L16P)

TUBB1 p.Gly109Glu

PLATELETS AND THROMBOPOIESIS | DECEMBER 16, 2021

Expanding the genetic spectrum of TUBB1-related thrombocytopenia

Verónica Palma-Barqueros, Loredana Bury, Shinji Kunishima, María Luisa Lozano, Augustín Rodríguez-Alen, Nuria Revilla, Natalia Bohdan, José Padilla, María P. Fernández-Pérez, María Eugenia de la Morena-Barrio, Ana Marín-Quiles, Rocío Benito, María F. López-Fernández, Shally Marcellini, Ana Zamora-Cánovas, Vicente Vicente, Constantino Martínez, Paolo Gresele, José M. Bastida,


José Rivera on behalf of the Inherited Platelet Disorders Project, Grupo Español de Alteraciones Plaquetarias Congénitas (GEAPC), Spanish Society of Thrombosis and Haemostasis (SETH)

Blood Adv (2021) 5 (24): 5453-5467.

tor rare or low prevalenc complex diseases

Network Hematological Diseases (ERN EuroBloodNet)

Detection of a missed diagnosis

- ✓ Healthy parents
- ✓ Child (boy) with platelet count of 8K, died after intracranial bleed
- ✓ 2nd child (girl) with platelet count of 12K, easy bruising
- ✓ CAMT screening negative!
- ✓ next WES

Received: 13 August 2022

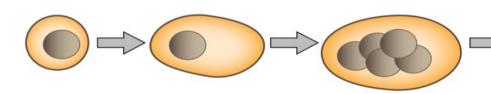
Accepted: 15 September 2022

DOI: 10.1111/bjh.18481

LETTER TO THE EDITOR

Maternal gonosomal mosaicism in rare autosomal dominant *SLFN14*-related thrombocytopenia

Precision diagnosis of IT can influence management


HSC

Early MK

Late MK

Pro-platelet formation

Platelet function

Transcriptional regulation

ANKRD26

RUNX1

ETV6

Dyserythropoiesis/ GATA1 GFI1B

Leukaemia

risk

anaemia

ACTN1 Benign

TUBB1

Genotype/phenotype hearing loss/

MYH9 kidney failure

DIAPH1 Hearing loss/ **TPO** mimetics

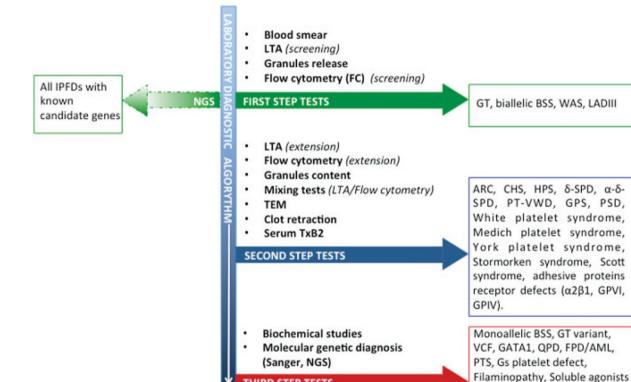
WAS Infections/transplant

TPO signaling

Pancytopenia MPL /transplant

Pancytopenia /TPO mimetics

Diseases (ERN EuroBloodNet)


When do we use the multi-gene panel test in the diagnostic algorithm?

receptor defects (P,Y,,, TP defect), Signalling pathway

defects (cPLA2, COX1, Tx

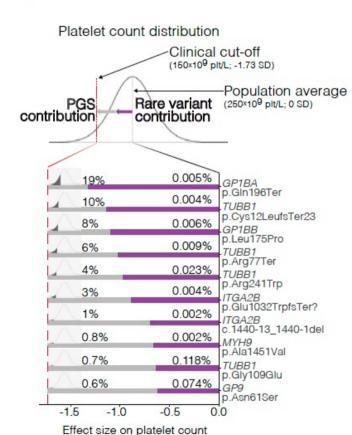
synthase deficiency)

THIRD STEP TESTS

Gresele et al. Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation. Seminars in Thrombosis and Hemostasis. 2016

for rare or low prevalence complex diseases

Diseases (ERN EuroBloodNet)


Other genetic studies for IT (outside diagnostic environment)

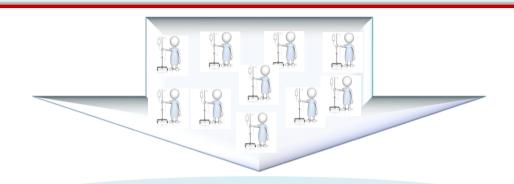
complex diseases

Clinical relevance of rare variants & polygenic scores for IT?

PGS VAR

The effects of pathogenic variants for inherited hemostasis disorders in 140,214 UK Biobank participants

- Effect of Rare and Common variants
- Common variants are polygenic scores (PGS)


Network complex diseases

for rare or low prevalence

Diseases (ERN EuroBloodNet)

Stefanucci L et al, Blood 2023

Diagnostic rate

+/- 55%

 $\widehat{\mathbb{T}}$

Plus 10%

European
Reference
Network
for rare or low prevalence
complex diseases

Network

Hematological

Diseases (ERN EuroBloodNet)

Multi Gene Panel Test

Whole Genome Sequencing

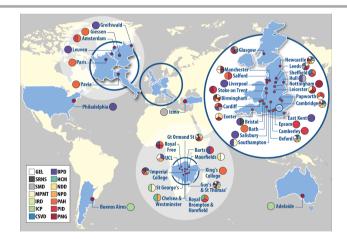
Blood transcriptomics

Other omics?

1. Clinic

2. Research

Gene discovery using WGS

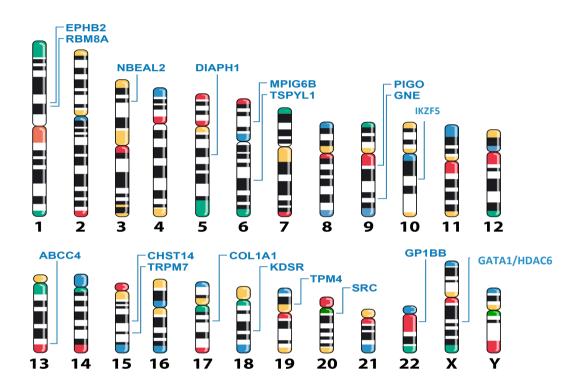


A A A	Diadina thusachatia			Multiple Drimary	
	Bleeding, thrombotic and Platelet Disorders	BPD	66	Multiple Primary Malignant Tumours	MPMT
(X)	Cerebral Small Vessel Disease	CSVD		Neurological and Developmental Disorders	NDD
	Ehler-Danlos Syndromes	EDS		Neuropathic Pain Disorders	NPD
Genomics england	Rare Diseases Pilot-II	GEL	96	Pulmonary Arterial Hypertension	РАН
	Hypertrophic Cardiomyopathy	нсм		Primary Immune Disorders	PID
	Intrahepatic Cholestasis of Pregnancy	ICP	G	Primary Membranoproliferative Glomerulonephritis	PMG
	Inherited Retinal Disorders	IRD		Stem cell and Myeloid Disorders	SMD
	Leber Hereditary Optic Neuropathy	LHON	G	Steroid Resistant Nephrotic Syndrome	SRNS
	bioba Improving the health of future generation	UK Biobank – E	extreme Red Cell Traits	UKBio	

• 57 NHS Hospitals and 26 non-UK Hospitals

(Bleeding & Platelet Disorders 1916 patients)

13,037 index patients


Diseases (ERN EuroBloodNet)

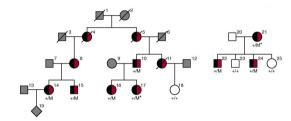
Turro et al, Nature. 2020 WGS by Illumina UK

Coordinator: Willem Ouwehand (Cambridge)

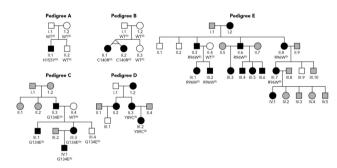
2011-2020: 18 new genes for bleeding & platelet disorders

UZLeuven (543 patients): Only 10% diagnostic rate

Albers et al, Nat Genetics 2011; Albers et al, Nat Genetics 2012; Cvejic et al, Nat Genetics 2013; Chen et al, Science 2014; Westbury et al, Genome Medicine 2015; Green et al, AJHG 2016; Stritt et al, Nat Comm 2016; Turro et al, Science Transl Med 2016; Stritt et al, Blood 2016; Simeoni et al, Blood 2016; Lentaigne et al, Blood 2016; Poggi et al, Haematologica 2016; Bariana et al, BJH 2017; Siva-palaratnam et al, Blood 2017; Pleines et al, JCI 2017; Greene et al, AJHG 2017; Westbury et al, Blood 2017; Sivapalaratnam et al, Blood 2018; Berrou et al, Blood 2018; Hofman et al, Blood 2018; Bariana et al, Haematologica 2018; Westbury et al, Blood Adv 2018; Lentainge et al, Blood 2019; Buyse et al, HMG 2021

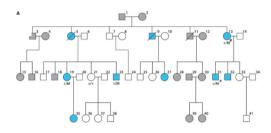

for rare or low prevalence complex diseases

Gene discovery using Whole Genome Sequencing



DIAPH1-related thrombocytopenia + deafness

IKZF5-related thrombocytopenia

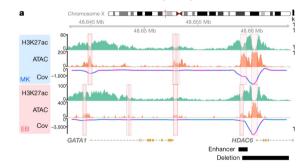

Unrelated patients with same genotype-phenotype BeviMed (Ernest Turro, Daniel Greene- Mount Sinai NY)

European
Reference
Network
for rore or low prevalence complex diseases

Stritt et al, 2016, Blood Lentaigne et al, 2019, Blood

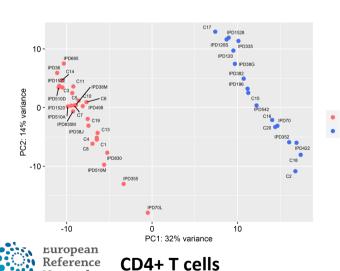
Network
 Hematological
 Diseases (ERN EuroBloodNet)

SRC-related syndromic thrombocytopenia

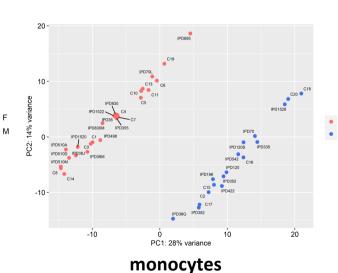

Large pedigrees

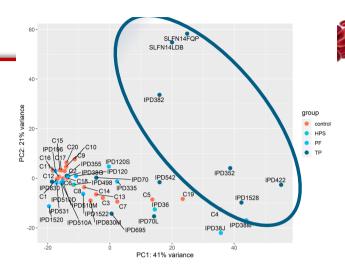
Turro et al, 2016, Science Translational Medicine

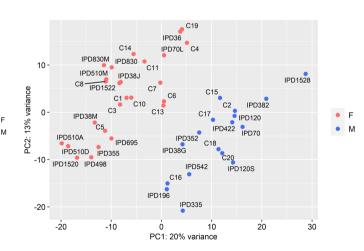
GATA1/HDAC6-related thrombocytopenia + Autism


Unique DELETION

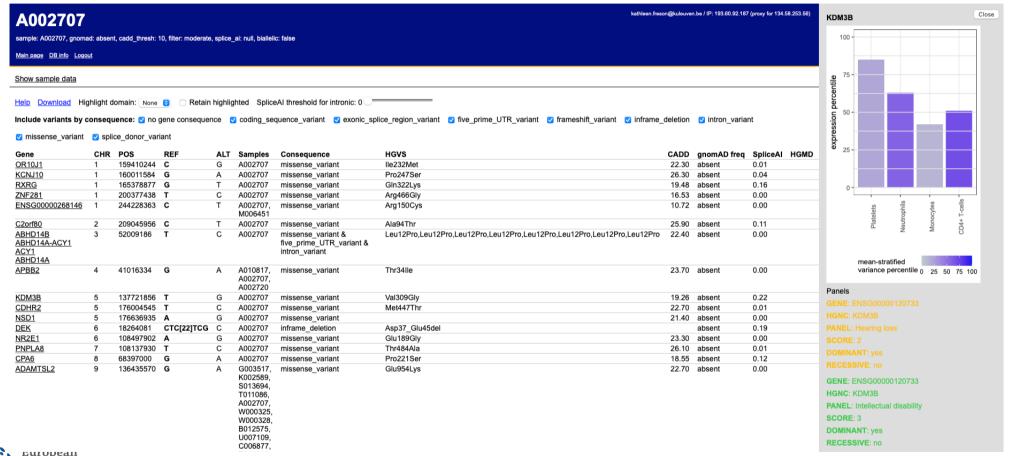
Turro et al, 2020, Nature


Blood cell RNAsequencing


20 controls9 Thrombocytopenia patients18 platelet functional disorders


Network for rare or low prevalence complex diseases

Diseases (ERN EuroBloodNet)


PLATELETS

Neutrophils

Raresevoir (Variant filtering) & Chromoscope (Variant display)

for rare or low prevalence complex diseases

Necrock:
 Hematological
 Diseases (ERN EuroBloodNet)

Key messages for use of an NGS panel test for diagnostics

- ✓ A (virtual) panel test is fast (TAT 4-6 months) and cheap
- ✓ It detects unexpected phenotype-genotype associations (including unsolicitated findings)
- ✓ Panel test is typically ordered by specialist with knowledge of the complexity of such test and its inclusion/exclusion criteria. Patients should be aware of what this test means (opt-out for RUNX1, ETV6, ANKRD26 and consenting).
- ✓ Sufficient phenotype information should be provide to allow variant classification
- ✓ Variants of Unknown clinical Significance (VUS- need further research (improved variant databases)
 before they can be used in the clinic

Acknowledgements

CMVB

UZLeuven & CMVB

Veerle LabarqueChris Van Geet

Kathelijne Peerlinck
Thomas Vanassche
Peter Verhamme

Chantal Thys

Christine Van Laer

Andreas Verstraete

Human Genetics, UZLeuven

Anniek Corverleyn Sarissa Baert Karen Willekens

Network
 Hematological
 Diseases (ERN EuroBloodNet)

All Belgian Clinical Centers for thrombosis & Hemostasis